

Piloter durablement la fertilisation dans les systèmes de culture agroécologiques - Banane

Chloé QUIMEBY, Esteban GATARD - 06/2024

Contexte

- Evolution des systèmes de culture et des itinéraires techniques depuis 20 ans
- Développement de **systèmes agroécologiques**, soucieux de l'environnement, de la santé des populations et économiquement viables
- Fluctuation des prix de l'engrais et disponibilité
- Raisonner les apports en atteignant les niveaux de production souhaités > rentabilité économique

Objectif de l'étude

- Identifier pour les différents indicateurs utilisés, les seuils critiques pour une nutrition sol-culture optimale et raisonnée
- Développer un socle technique et scientifique sur le pilotage de la fertilisation (canne et banane)
- Faire le lien entre **fertilité organique** + **fertilité chimique** du sol (= réserves) et stratégie de fertilisation (apports)
- Transfert et diffusion aux agriculteurs et prescripteurs

Un sol bien fourni permettant une bonne libération des éléments

- Entretien de la fertilité du sol depuis plusieurs années :
 - Apport de 80t de VEGEGWA avant jachère et avant plantation
 - Semis de plante de service en inter rang: Brachiaria Decumbes, radis

	pH eau	CEC METSON (meq/100g)	Taux de MO (%)	C (%)	C/N	N TOTAL (%)	P2O5 Olsen (ppm)	K2O (meq/100g)	MgO (meq/100g)	CaO (meq/100g)	Na2O (meq/100g)
PILOFER	7,35	40,14	7,45	4,3	9,41	0,46	77	5,33	4,37	18,12	0,15
Norme (andosol)	>5,8	20 à 30	7 à 10	>1,4	9 à 11	>0,15	100	0,8 – 1,2	1,5 à 2	4 à 5	<5% CEC

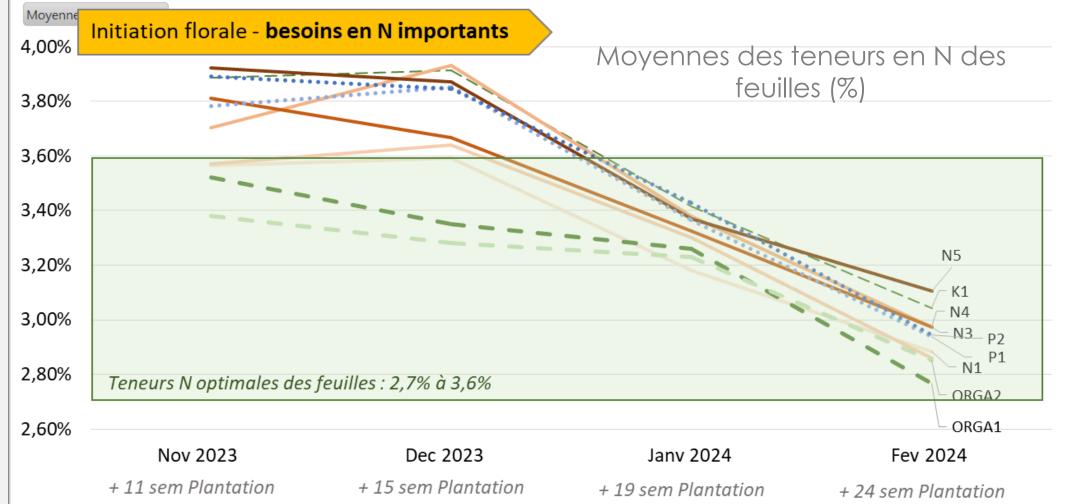
EA DUMANOIR – Capesterre Belle Eau

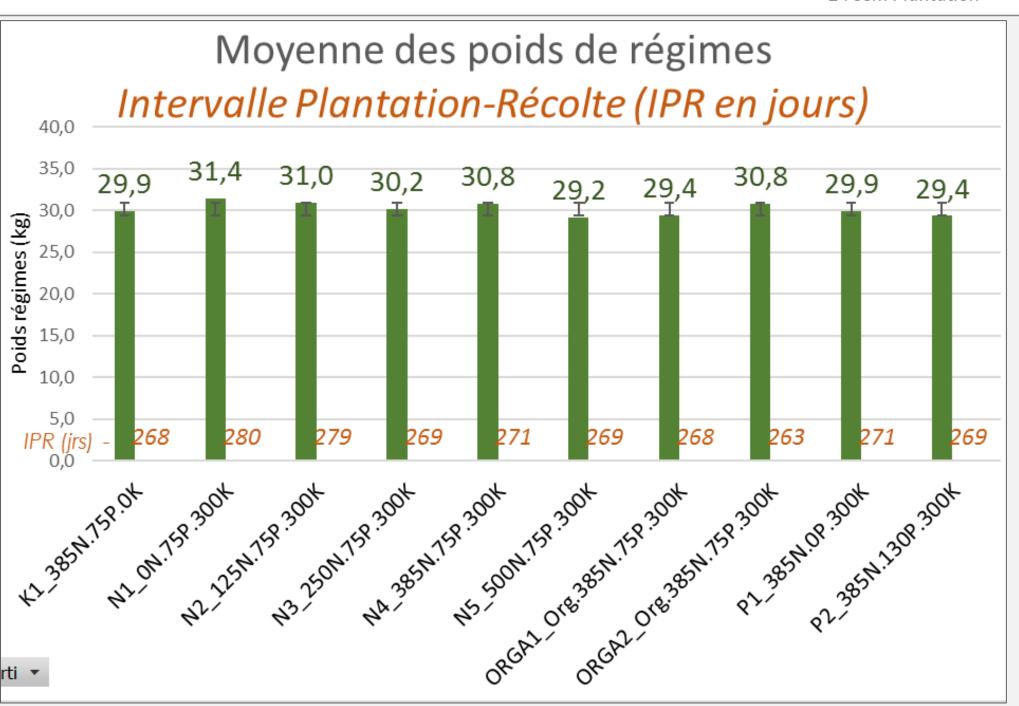
Altitude: 165m

Variété banane : « Gall » plantée à 1810 pieds/ha

- Parcelle de 1,4 ha
- > Apports **toutes les 3 semaines** (17 apports/an)
- Mesures:
 - Analyses de sol, analyses foliaires et chlorophylle (SPAD)
 - Croissance (hauteur et circonférence)
 - > Rythme d'émission foliaire
 - Grade et poids des doigts
 - Poids de régimes
 - Données climatiques

8 Modalités minérales et 2 modalités organiques


		Code	Type d'engrais	N (kg/ha)	P2O5	K2O
		Code	Type a eligidis	N (Kg/IId)	(kg/ha)	(kg/ha)
٨	Mod.1	N1	Eng. minéral	0	75	300
٨	Mod.2	N2	Eng. minéral	125	75	300
٨	Mod.3	N3	Eng. minéral	250	75	300
٨	Mod.4	N4	Eng. minéral	385	75	300
٨	Mod.5	N5	Eng. minéral	500	75	300
٨	4.boM	P1	Eng. minéral	385	0	300
٨	Mod.7	P2	Eng. minéral	385	130	300
٨	8.boN	K	Eng. minéral	385	75	0
0	RGA 1	OI SA:	100% organique	385	75	300
0	RGA 2	OI SAZ	50% minéral 50% organique	385	75	300


Résultats

- ❖ A ce stade, pas de différence significative sur la teneur en N des feuilles → les besoins semblent plus importants au démarrage de la plantation.
- Pas de différence significative sur la croissance (hauteur et circonférence)
- Pas d'impact de la fertilisation sur le Rythme d'Emission Foliaire
- Pas de différence significative sur le rendement et le poids des doigts
- A ce stade, IFC identiques entre les modalités

Rythme d'Emission Foliaire (nb de nouvelles feuilles / semaine)

	Nov 23	Dec 23	Janv 24
K1	1,3	1,1	0,9
N1	1,2	1,0	1,0
N2	1,2	1,1	0,9
N3	1,3	1,1	0,9
N4	1,3	1,1	0,9
N5	1,3	1,1	0,9
ORGA1	1,2	1,1	0,9
ORGA2	1,1	1,1	0,9
P1	1,2	1,1	0,9
P2	1,2	1,1	0,9

A retenir

- Dans les conditions de l'essai, peu de différences, à ce stade, entre les différents niveaux d'azote, grâce à une bonne fourniture du sol.
- ❖ Un apport d'amendement organique régulier et en quantité avant la plantation permet d'améliorer la fertilité du sol → mise en réserve des éléments minéraux et effet tampon
- ❖ Le fractionnement des apports d'engrais permet de limiter les pertes par lessivage et volatilisation → 15 apports / an recommandé (toutes 3 semaines)

ATTENTION: les résultats présentés sur ce livrable correspondent aux caractéristiques pédoclimatiques de la parcelle et aux pratiques de l'agriculteur. La stratégie de fertilisation doit être adaptées aux caractéristiques de la plantation: Pour plus d'informations, se référer aux techniciens

